
PL-SLAM: Real-Time Monocular Visual SLAM with Points and Lines

Albert Pumarola1 Alexander Vakhitov2 Antonio Agudo1 Alberto Sanfeliu1 Francesc Moreno-Noguer1

Abstract— Low textured scenes are well known to be one of
the main Achilles heels of geometric computer vision algorithms
relying on point correspondences, and in particular for visual
SLAM. Yet, there are many environments in which, despite
being low textured, one can still reliably estimate line-based
geometric primitives, for instance in city and indoor scenes,
or in the so-called “Manhattan worlds”, where structured
edges are predominant. In this paper we propose a solution
to handle these situations. Specifically, we build upon ORB-
SLAM, presumably the current state-of-the-art solution both
in terms of accuracy as efficiency, and extend its formulation
to simultaneously handle both point and line correspondences.
We propose a solution that can even work when most of
the points are vanished out from the input images, and,
interestingly it can be initialized from solely the detection of line
correspondences in three consecutive frames. We thoroughly
evaluate our approach and the new initialization strategy
on the TUM RGB-D benchmark and demonstrate that the
use of lines does not only improve the performance of the
original ORB-SLAM solution in poorly textured frames, but
also systematically improves it in sequence frames combining
points and lines, without compromising the efficiency.

I. INTRODUCTION
The last years have witnessed a surge in autonomous

cars and aerial vehicles able to navigate for hundreds of
miles without human intervention [10], [16], [32]. Among
other technologies, at the core of these systems lie sophisti-
cated Simultaneous Localization And Mapping (SLAM) al-
gorithms, which have proven effective to accurately estimate
trajectories while geometrically reconstructing the unknown
environment.

Since the groundbreaking Parallel Tracking And Mapping
(PTAM) [13] algorithm was introduced by Klein and Murray
in 2007, many other real-time visual SLAM approaches
have been proposed, including the feature point-based ORB-
SLAM [18], and the direct-based methods LSD-SLAM [7]
and RGBD-SLAM [6] that optimize directly over image
pixels. Among them, the ORB-SLAM [18] seems to be
the current state-of-the-art, yielding better accuracy than the
direct methods counterparts.

While the performance of ORB-SLAM [18] in well tex-
tured sequences is impressive, it is prone to fail when dealing
with poorly textured videos or when feature points are
temporary vanished out due to, e.g., motion blur. This kind
of situations are often encountered in man-made scenarios.
However, despite the lack of reliable feature points, these
environments may still contain a number of lines that can be
used in a similar way.

1A.Pumarola, A.Agudo, A.Sanfeliu and F.Moreno-Noguer are with the
Institut de Robòtica i Informàtica Industrial (UPC-CSIC), Barcelona, Spain

2A.Vakhitov is with Skolkovo Institute of Science and Technology,
Moscow, Russia.

− 2 − 1 0 1 2 3 4
x [m]

− 3

− 2

− 1

0

1

2

y
 [

m
]

Ground Truth

Point based ORB-SLAM

Point and Line based PL-SLAM

3
4

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0

Error

−
2

−
1

0
1

x
 [m

]

−
3

−
2

−
1 0

y [m]

2 1 0 1 2
− 3

− 2

− 1

0

1

2

y
[m

]

Gro

− 2 − 1 0 1 2
x [m]

− 3

− 2

− 1

0

1

y
[m

]

− 2 − 1 0 1 2 3 4
x [m]

− 3

− 2

− 1

0

1

2

y
 [

m
]

Ground Truth

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

E
rr

o
r

− 2 − 1 0 1 2 3 4
x [m]

− 3

− 2

− 1

0

1

2

y
 [

m
]

Ground Truth

Point based ORB-SLAM

Point and Line based PL-SLAM

Fig. 1. ORB-SLAM [18] vs PL-SLAM. Top: The proposed PL-SLAM
allows to simultaneously handle point and line features. This is specially
advantageous in situations with small number of points such as that shown
in the second image. Bottom-Left: Comparison of the trajectories obtained
using the state-of-the-art point-based method ORB-SLAM [18] and our PL-
SLAM, in a TUM RGB-D sequence. The black dotted line shows the ground
truth, the blue dashed line is the trajectory obtained with ORB-SLAM [18],
and the green solid line is the trajectory obtained with PL-SLAM. Bottom-
Right: Close-up of part of the map color-coded with the amount of error.
Red corresponds to higher error levels, and green to lower ones. Note
how the use of lines consistently improves the accuracy of the estimated
trajectory.

Exploiting lines, though, is not a trivial task. First, ex-
isting line detectors and parameterizations are not as well-
established in the literature as feature point ones. And
secondly, the algorithms to compute pose from line corre-
spondences are less reliable than those based on points and
are very sensitive to the partial occlusions that lines may
undergo. These reasons made that current SLAM approaches
making use of lines rely on range cameras or laser scan-
ners [2], [12], [20], [25].

In this work, we tackle all these issues using a purely
visual-based approach. Building upon the ORB-SLAM [18]
framework, we propose PL-SLAM (Point and Line SLAM),
a solution that can simultaneously leverage points and lines
information. As recently suggested by [30], lines are parame-
terized by their endpoints, whose exact location in the image
plane is estimated following a two-step optimization process.
This representation, besides yielding robustness to occlusions
and mis-detections, allows integrating the line representation
within the SLAM machinery as if they were points and
hence re-use most of the ORB-SLAM [18] architecture. The
resulting approach is shown to be very accurate in poorly
textured environments, and also, improves the performance
of the original ORB-SLAM [18] in highly textured sequences
(see Fig. 1).

An additional contribution of this paper is that we also
propose a new initialization approach that allows estimating
an approximate initial maps from only line correspondences
between three consecutive images. Previous solutions were
based on homography [8] or essential matrix estimation [29],
and required point correspondences. To the best of our
knowledge, there are no equivalent techniques based on lines.
The solution we propose holds on the assumption of constant
rotation between three consecutive frames and that these
rotations are relatively small. In the experimental section,
we will show that despite these approximations, the initial
map we estimate highly resembles those obtained by point-
based solutions, and therefore, are a very good alternative to
use when feature points are not available.

II. RELATED WORK

Building the 3D rigid structure of unknown environment
while recovering the camera trajectory from a monocular
image sequence has been an extremely important research
area in robotics and computer vision for decades, with
many real applications in autonomous robot navigation and
augmented reality. This problem is known as SLAM, and its
core is roughly the same compared to structure-from-motion
algorithms.

Early filtering approaches applied the Extended Kalman
Filter (EKF) [5] to process every frame in the video for
small maps, providing the first real-time solutions. Subse-
quent works based on Bundle Adjustment (BA) handled
denser maps just using key-frames to estimate the map [13],
[17], obtaining more accurate solutions [27] than filtering
techniques. Most approaches rely on PTAM algorithm [13],
that represented a breakthrough in visual-based SLAM. This
method approximately decouples localization and mapping
in two threads that run in parallel, relying on FAST corners
points [23]. In [14] the accuracy was improved with edge
features together with a rotation estimation step during
tracking that provided better relocalization results, and even
reducing the computational cost [24]. More recently, the
ORB-SLAM system has been proposed in [18], providing a
more robust camera tracking and mapping estimator. A multi-
threaded CPU approach was presented in [7] to estimate real-
time dense structure estimation.

However, all previous feature-based methods fail in en-
vironments with poor texture or situations with defocus
and motion blur. To solve this, dense and direct meth-
ods can be applied, even though they are likely to be
computationally expensive [19], [21], and require dedicated
GPU-implementations to achieve real-time performance.
Other semi-direct methods such as [9] overcome the high-
computation requirement of dense methods by exploiting
only pixels with strong gradients, providing an intermedi-
ate level of accuracy, density and complexity. Scene prior
information have been also exploited to provide a significant
boost to SLAM systems [3], [4].

Motivated by the need for efficient and accurate scene
representations even for poorly textured environments, in

Fig. 2. PL-SLAM pipeline, an extension of the ORB-SLAM [18] pipeline.
The system is composed by three main threads: Tracking, Local Mapping
and Loop Closing. The Tracking thread estimates the camera position and
decides when to add new keyframes. Then, Local Mapping adds the new
keyframe information into the map and optimizes it with BA. The Loop
Closing thread is constantly checking for loops and correcting them.

tasks such as visual inspection from aerial vehicles or hand-
held devices (i.e., with limited computational resources), we
here propose a novel visual-based SLAM system that can
combine points and lines information in a unified framework
while keeping the computational cost. Note that several
parametrizations to combine points and lines were used
in EKF-SLAM [26]. However, as we said above, filtering-
based approaches have been outperformed by optimization-
based approaches in rigid SLAM, as we do in this work.
We validate our method on a wide variety of scenarios,
outperforming state-of-the-art solutions for highly textured
sequences and showing very accurate solutions in low-
textured scenarios where standard feature-based methods fail.

III. SYSTEM OVERVIEW

The pipeline of our approach highly resembles that of the
ORB-SLAM [18], in which we have integrated the informa-
tion provided by line features (see Fig. 2). We next briefly
review the main building blocks in which line operations
are performed. For a description of the operations involving
point features, the reader is referred to [18].

One of the main issues to address in SLAM algorithms is
the computational complexity. In order to preserve the real-
time characteristics of ORB-SLAM [18], we have carefully
chosen, used and implemented fast methods for operating
with lines in all stages of the pipeline: detection, trian-
gulation, matching, culling, relocalization and optimization.
Line segments in an input frame are detected by mean of
LSD [31], an O(n) line segment detector, where n is the
number of pixels in the image. Then, lines are pairwise
matched with lines already present in the map using a
relational graph strategy [33]. This approach relies on lines’
local appearance (Line Band Descriptors) and geometric

constraints and is shown to be quite robust against image
artifacts while preserving the computational efficiency.

As it is done with point features, after having obtained
an initial set of map-to-image line feature pairs, all lines
of the local map are projected onto the image to find
further correspondences. Then, if the image contains suf-
ficient new information about the environment, it is flagged
as a keyframe and its corresponding lines are triangulated
and added to the map. To discard possible outliers, lines
seen from less than three viewpoints or in less than 25%
of the frames from which they were expected to be seen
are discarded too (culling). Line positions in the map are
optimized with a local BA. Note in Fig. 2 that we do not use
lines for loop closing. Matching lines across the whole map
is too computationally expensive. Hence, only point features
are used for loop detection.

IV. LINE-BASED SLAM

We next describe the line parameterization and error
function we use and how this is integrated within the
main building blocks of the SLAM pipeline, namely bundle
adjustment, global relocalization and feature matching.

A. Line-based Reprojection Error

In order to extend the ORB-SLAM [18] to lines, we
need a proper definition of the reprojection error and line
parameterization.

Following [30], let P,Q ∈ R3 be the 3D endpoints of a
line, pd,qd ∈R2 their 2D detections in the image plane, and
ph

d,q
h
d ∈ R3 theirs corresponding homogeneous coordinates.

From the latter we can obtain the normalized line coefficients
as:

l =
ph

d×qh
d∣∣ph

d×qh
d

∣∣ . (1)

The line reprojection error Eline is then defined as the
sum of point-to-line distances Epl between the projected line
segment endpoints, and the detected line in the image plane
(see Fig. 3-right). That is:

Eline(P,Q, l,θ ,K) = E2
pl(P, l,θ ,K)+E2

pl(Q, l,θ ,K), (2)

with:
Epl(P, l,θ ,K) = l>π(P,θ ,K), (3)

where l are the detected line coefficients, π(P,θ ,K) rep-
resents the projection of the endpoint P onto the image
plane, given the internal camera calibration matrix K, and
the camera parameters θ = {R, t} that includes the rotation
and translation parameters, respectively.

Note that in practice, due to real conditions such as line
occlusions or mis-detections, the image detected endpoints
pd and qd will not match the projections of the endpoints
P and Q (see Fig. 3-left). Therefore, we define the detected
line reprojection error as:

Eline,d(pd,qd, l) = E2
pl,d(pd, l)+E2

pl,d(qd, l), (4)

where l is the projected 3D line coefficients and the detected
point-to-line error is Epl,d(pd, l) = l>pd.

Fig. 3. Left: Notation. Let P,Q ∈ R3 be the 3D endpoints of a 3D line,
p̃, q̃∈R2 their projected 2D endpoints to the image plane and l̃ the projected
line coefficients. pd,qd ∈R2 the 2D endpoints of a detected line, Pd,Qd ∈R3

their real 3D endpoints, and l the detected line coefficients. X ∈ R3 is a
3D point and x̃ ∈ R2 its corresponding 2D projection. Right: Line-based
reprojection error. d1 and d2 represent the line reprojection error, and d′1
and d′2 the detected line reprojection error between a detected 2D line (blue
solid) and the corresponding projected 3D line (green dashed).

Based on the methodology proposed in [30], a recursion
over the detected reprojection line error will be applied in
order to optimize the pose parameters θ while approximating
Eline,d to the line error Eline defined on Eq. (2).

B. Bundle Adjustment with Points and Lines

The camera pose parameters θ = {R, t} are optimized at
each frame with a BA strategy that constrains θ to lie in the
SE(3) group. For doing this, we build upon the framework of
the ORB-SLAM [18] but besides feature point observations,
we include the lines as defined in the previous subsection.
We next define the specific cost function we propose to
be optimized by the BA that combines the two types of
geometric entities.

Let X j ∈ R3 be the generic j-th point of the map. For
the i-th keyframe, this point can be projected onto the image
plane as:

x̃i, j = π(X j,θ i,K), (5)

where θ i = {Ri, ti} denotes the specific pose of the i-th
keyframe. Given an observation xi, j of this point, we define
following 3D error:

ei, j = xi, j− x̃i, j . (6)

Similarly, let us denote by P j and Q j the endpoints
of the j-th map line segment. The corresponding image
projections (expressed in homogeneous coordinates) onto the
same keyframe can be written as:

p̃h
i, j = π(P j,θ i,K), (7)

q̃h
i, j = π(Q j,θ i,K) . (8)

Then, given the image observations pi, j and qi, j of the j-th
line endpoints, we use Eq. (1) to estimate the coefficients of
the observed line l̃i, j. We define the following error vectors
for the line:

e′i, j = (l̃i, j)>(K−1ph
i, j), (9)

e′′i, j = (l̃i, j)>(K−1qh
i, j). (10)

Fig. 4. Estimating camera rotation from line correspondences. P,Q ∈ R3

are the 3D line endpoints, li, i = {1,2,3} its detections in three consecutive
frames with endpoints pi,qi, and coefficients li.

The errors (9, 10) are in fact instances of the point-to-line
error (3). As explained in [30] they are not constant w.r.t.
shift of the endpoints P j, Q j along the corresponding 3D line,
which serves as implicit regularization allowing us to use
such a non-minimal line parametrization in the BA.

Observe that representing lines using their endpoints we
obtain comparable error representations for points and lines.
We can therefore build a unified cost function that integrates
each of the error terms as:

C = ∑
i, j

ρ

(
e>i, jΩ

−1
i, j ei, j + e

′
i, j
>

Ω
′
i, j
−1e′i, j + e

′′
i, j
>

Ω
′′
i, j
−1e′′i, j

)
where ρ is the Huber robust cost function and Ωi, j, Ω

′
i, j, Ω

′′
i, j

are the covariance matrices associated to the scale at which
the keypoints and line endpoints were detected, respectively.

C. Global Relocalization

An important component of any SLAM method, is an
approach to relocalize the camera when the tracker is lost.
This is typically achieved by means of a PnP algorithm,
that estimates the pose of the current (lost) frame given
correspondences with 3D map points appearing in previous
keyframes. On top of the PnP method, a RANSAC strategy
is used to reject outliers correspondences.

In the ORB-SLAM [18], the specific PnP method that is
used is the EPnP [1], which however, only accepts point
correspondences as inputs. In order to make our approach ap-
propriate to handle lines for relocalization, we have replaced
the EPnP by the recently published EPnPL [30], which
minimizes the detected line reprojection error of Eq. (4).

Furthermore, EPnPL [30] is robust to partial line occlusion
and mis-detections. This is achieved by means of a two-step
procedure in which first minimizes the reprojection error of
the detected lines and estimates the line endpoints pd,qd.
These points, are then shifted along the line in order to match
the projections p̃d, q̃d of the 3D model endpoints P,Q (see
Fig. 3). Once these matches are established, the camera pose
can be reliably estimated.

V. MAP INITIALIZATION WITH LINES
Another contribution of this paper is an algorithm to esti-

mate an initial map using only line correspondences. Current

optimization-based SLAM approaches are initialized with
maps built from point correspondences between at least two
frames. Homography [8] or essential matrix [29] estimation
algorithms are then used to compute the initial map and pose
parameters. We next describe our line-based solution for map
initialization, which can be a good alternative in low textured
scenes with lack of feature points.

Let us consider the setup of Fig. 4, where a line defined
by endpoints P,Q is projected onto three camera views. Let
{p1,q1}, {p2,q2} and {p3,q3} be the endpoint projections
in each of the views and l1, l2, l3 ∈R3 the corresponding line
coefficients computed from the projected endpoints.

We will make the assumption of small and continuous
rotation between consecutive camera poses, such that the
rotation from the first to the second camera views is the
same than the rotation from the second to the third one1.
Under this assumption we can represent the three camera
rotations by R1 = R>, R2 = I, and R3 = R, with I being the
3×3 identity matrix.

Note that the line coefficients li, i= {1,2,3} also represent
the parameters of a vector which is normal to the plane
formed by the center of projection Oi and the projections
pi,qi. The cross product of two such vectors li will be parallel
to the line P,Q and at the same time orthogonal to the third
vector, all of them appropriately rotated and put in a common
reference. This constraint can be written as:

l>2
(
(R>l1)× (Rl3)

)
= 0. (11)

Additionally, for small rotations we can approximate R as:

R =

 1 −r3 r2
r3 1 −r1
−r2 r1 1

 . (12)

For this parametrization, having three matched lines, we
will have three quadratic equations like Eq. (11) with three
unknowns, r1, r2 and r3. We adapt the polynomial solver
of [15], which yields up to eight solutions. For each possible
rotation matrix we can get t1, t3 by using the trifocal tensor
equations [11] which will be linear in t1, t3. We assume t2 =
0. We evaluate the eight possible solutions and keep the one
that minimizes Eq. (11).

It is worth to point that in order to get enough independent
constraints when solving for the translation components
using the trifocal tensor equations, we need two additional
line correspondences, and hence, the total number of line
matches required by our algorithm is five.

VI. EXPERIMENTAL RESULTS

We have compared our system with the current state-
of-the-art Visual SLAM methods using the TUM RGB-D
benchmark [28]. Also, we evaluate the proposed initialization
approach with synthetic and real data and compare the
computation time of our PL-SLAM algorithm and the ORB-
SLAM [18]. All experiments were carried out with an Intel

1In the experimental section we will evaluate the consequences of this
assumption, and show that in practice is a good approximation.

TABLE I
LOCALIZATION ACCURACY IN THE TUM RGB-D BENCHMARK [28]

Absolute KeyFrame Trajectory RMSE [cm]
TUM RGB-D

Sequence
PL-SLAM
Classic Init

PL-SLAM
Line Init ORB-SLAM PTAM† LSD-SLAM† RGBD-SLAM†

f1 xyz 1.21 1.46 1.38 1.15 9.00 1.34
f2 xyz 0.43 1.49 0.54 0.2 2.15 2.61
f1 floor 7.59 9.42 8.71 - 38.07 3.51

f2 360 kidnap 3.92 60.11 4.99 2.63 - 393.3
f3 long office 1.97 5.33 4.05 - 38.53 -

f3 nstr tex far ambiguity
detected 37.60 ambiguity

detected 34.74 18.31 -

f3 nstr tex near 2.06 1.58 2.88 2.74 7.54 -
f3 str tex far 0.89 1.25 0.98 0.93 7.95 -

f3 str tex near 1.25 7.47 1.5451 1.04 - -
f2 desk person 1.99 6.34 5.95 - 31.73 6.97

f3 sit xyz 0.066 9.03 0.08 0.83 7.73 -
f3 sit halfsph 1.31 9.05 1.48 - 5.87 -

f3 walk xyz 1.54 ambiguity
detected 1.64 - 12.44 -

f3 walk halfsph 1.60 ambiguity
detected 2.09 - - -

Median over 5 executions for each sequence. All trajectories were aligned with
7DoF with the ground truth before computing the ATE error with the script provided
by the benchmark [28]. Both ORB-SLAM and PL-SLAM were executed with the
parametrization of the on-line open source ORB-SLAM package. †Result of PTAM,
LSD-SLAM and RGBD-SLAM were extracted from [18].

TABLE II
TRACKING AND MAPPING TIMES

Mean execution time [ms]
Thread Operation PL-SLAM ORB-SLAM

KeyFrame
Insertion 17.08 9.86

Local

Map Feature
Culling 1.18 1

Mapping

Map Features
Creation 74.64 8.39

Local BA 218.25 118.5
KeyFrame

Culling 12.7 2.86

Total 3Hz 7Hz

Tracking

Features
Extraction 31.32 10.76

Initial Pose
Estimation 7.16 7.16

Track
Local Map 12.58 3.18

Total 20Hz 50Hz

Mean execution time of 5 different se-
quences of the TUM RGB-D bench-
mark [28].

Core i7-4790 (4 cores @3.6 GHz), 8Gb RAM and ROS
Hydro [22]. Due to the randomness of the some stages
of the pipeline, e.g., initialization, position optimization or
global relocalization, all experiments were run five times
and we report the median of all executions. Supplemen-
tary material can be found on website http://www.
albertpumarola.com/research/pl-slam/.

A. Localization Accuracy in the TUM RGB-D Benchmark

To evaluate the localization accuracy we compare our PL-
SLAM method against current state-of-the-art Visual SLAM
methods, including ORB-SLAM [18], PTAM [13], LSD-
SLAM [7] and RGBD-SLAM [6]. The metric used for the
comparison is the Absolute Trajectory Error (ATE), provided
by the evaluation script of the benchmark. Before computing
the error, all trajectories are aligned using a similarity warp
except for the RGBD-SLAM [6] which is aligned by a rigid
body transformation. The results are summarized in Table I.

Note that our PL-SLAM consistently improves the tra-
jectory accuracy of ORB-SLAM [18] in all sequences.
Indeed, it yields the best result in all but two sequences,
for which PTAM [13] performs slightly better. Nevertheless,
PTAM [13] turned not to be so reliable, as in 5 out of
all 12 sequences it lost track. LSD-SLAM [7] and RGBD-
SLAM [6] also lost track in 3 and 7 sequences, respectively.

B. Map Initialization - Synthetic Experiments

In order to evaluate the map initialization algorithm we
describe in Sect. V we perform several synthetic and real
experiments.

In the synthetic tests we first evaluate the stability of
the polynomial solver we built, modifying the toolbox of
Kukelova et al. [15]. Fig. 5-left shows the distribution of

M
ed

ian
 R

elative T
ran

slatio
n

 E
rro

r

0,8

0,9

1

M
ed

ia
n

 R
o

ta
ti

o
n

 A
n

gl
e

[d
eg

]
2

4

6

8

10

Rotation Angle [deg]
0 5 10 15 20 25 30

%
 e

xp
er

im
en

ts

0

10

20

30

40

log error
−16 −14 −12 −10 −8 −6

Fig. 5. Map Initialization - Synthetic experiments. Left: Numerical stability
of the polynomial system solver. Right: Rotation and translation error w.r.t
frames rotation.

errors in the parameter estimation for ideal solutions. Note
that the average error is around 1e-15, indicating that our
modified solver is very stable.

Additionally, we have assessed the consequences of as-
suming small and constant rotations between three consecu-
tive frames. Fig. 5-right displays the rotation and translation
errors produced for increasing inter-frame rotations. While
the estimated rotation error remains within relatively small
bounds, the translation error is more severely affected by
the small rotation assumption. In any event, when this initial
map is fed into the BA optimizer, the translation error is
drastically reduced.

C. Map Initialization - Real Experiments

We also evaluate our PL-SLAM method using the clas-
sic initialization (based on homography or essential matrix
computation), and with the proposed map initialization based
only on lines (see again Table I). As expected, the accuracy
with the line map initialization drops due to the small rotation

http://www.albertpumarola.com/research/pl-slam/
http://www.albertpumarola.com/research/pl-slam/

assumptions it does. However, in the low textured sequence
f3 nstr tex far, the classic initialization detects an ambiguity
which disables it of initializing the map. In contrast, the
proposed line initialization is able to estimate an initial
map. In the sequences f3 walk xyz and f3 walk halfsph the
proposed initialization does not work due lo large inter-frame
rotations produced in the initial frames.

D. Computation Time

While adding line primitives to the visual SLAM improves
accuracy and robustness, it also increases the computational
complexity. Table II summarizes the time required for each
subtask within the “Tracking” and “Local Mapping” blocks,
for PL-SLAM and ORB-SLAM [18]. Note that in the
subtasks with larger penalties are the map features creation
and the local BA. In any event the final frame rate of the
PL-SLAM is near real time (20 fps) in a standard and not
optimized PC.

VII. CONCLUSIONS

In this work we have proposed PL-SLAM, an approach to
visual SLAM that allows to simultaneously process points
and lines and tackle situations where point-only based
methods are prone to fail, like poorly textured scenes or
motion blurred images where feature points are vanished out.
We built upon the architecture of the state-of-the-art ORB-
SLAM and modify its original pipeline to operate with line
features without significantly compromising its efficiency.
We have also presented a novel line-based map initialization
approach, which estimates camera pose and 3D map from
5 line correspondences in three consecutive images. This
approach holds on the assumption of constant and small
inter-frame rotation in these three images. In the results
section we show that this indeed is a good approximation for
many situations. Additionally, we evaluated the full pipeline
on the TUM RGB-D benchmark and showed consistent
improvement w.r.t. current competing methods.

In future work, we plan to further exploit line features and
incorporate other geometric primitives like planes, which can
be built from lines in a similar manner as we have built lines
from point features.

ACKNOWLEDGMENTS

This work has been partially supported by the EU project
AEROARMS H2020-ICT-2014-1-644271, by the MINECO
projects RobInstruct TIN2014-58178-R and Rob-Int-Coop
DPI2013-42458-P, by the ERA-Net Chistera project I-
DRESS PCIN-2015-147 and by the Russian MES grant
RFMEFI61516X0003.

REFERENCES

[1] accurate non-iterative o(n) solution to the pnp problem.
[2] N. Ayache and O. D. Faugeras. Building, registrating, and fusing noisy

visual maps. IJRR, 7(6):45–65, 1988.
[3] S. Bao, M. Bagra, Y. Chao, and S. Savarese. Semantic structure from

motion with points, regions, and objects. In CVPR, pages 2703–2710,
2012.

[4] A. Concha, W. Hussain, L. Montano, and J. Civera. Incorporating
scene priors to dense monocular mapping. AURO, 39(3):279–292,
2015.

[5] A. Davison, I. Reid, N. Molton, and O. Stasse. MonoSLAM: Real-time
single camera SLAM. TPAMI, 29(6):1052–1067, 2007.

[6] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard. 3-D
mapping with an RGB-D camera. TRO, 30(1):177–187, 2014.

[7] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-scale direct
monocular SLAM. In ECCV, pages 834–849. Springer, 2014.

[8] O. D. Faugeras and F. Lustman. Motion and structure from motion in
a piecewise planar environment. IJPRAI, 2(03):485–508, 1988.

[9] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza.
SVO 2.0: Semi-direct visual odometry for monocular and multicamera
systems. TRO, 2016.

[10] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In CVPR, pages 3354–3361,
2012.

[11] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, second
edition, 2004.

[12] W. Y. Jeong and K. M. Lee. Visual SLAM with line and corner
features. In IROS, pages 2570–2575. IEEE, 2006.

[13] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In ISMAR, pages 225–234. IEEE, 2007.

[14] G. Klein and D. Murray. Improving the agility of keyframe-based
SLAM. In ECCV, pages 802–815, 2008.

[15] Z. Kukelova, M. Bujnak, and T. Pajdla. Polynomial eigenvalue solu-
tions to minimal problems in computer vision. TPAMI, 34(7):1381–
1393, 2012.

[16] H. Lim, J. Lim, and H. J. Kim. Real-time 6-DOF monocular vision
SLAM in a large-scale environment. In ICRA, 2014.

[17] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd.
Generic and real-time structure from motion using local bundle
adjustment. IMAVIS, 27(8):1178–1193, 2009.

[18] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-SLAM: a
versatile and accurate monocular slam system. TRO, 31(5):1147–1163,
2015.

[19] R. Newcome and A. J. Davison. Live dense reconstruction with a
single moving camera. In CVPR, pages 1498–1505, 2010.

[20] P. Newman, J. Leonard, J. D. Tardós, and J. Neira. Explore and
return: Experimental validation of real-time concurrent mapping and
localization. In ICRA, volume 2, pages 1802–1809. IEEE, 2002.

[21] M. Pizzoli, C. Forster, and D. Scaramuzza. REMODE: Probabilistic,
monocular dense reconstruction in real time. In ICRA, pages 2609–
2616, 2014.

[22] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. ROS: an open-source robot operating
system. In ICRAW, volume 3, page 5. Kobe, Japan, 2009.

[23] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. In ECCV, pages 430–443, 2006.

[24] G. Sibley, C. Mei, I. Reid, and P. Newman. Adaptive relative bundle
adjustment. In RSS, 2009.

[25] P. Smith and I. D. Reid A. J. Davison. Real-time monocular SLAM
with straight lines. In BMVC, volume 6, pages 17–26, 2006.

[26] J. Sola, T. Vidal-Calleja, J. Civera, and J.M.M. Montiel. Impact of
landmark parametrization on monocular EKF-SLAM with points and
lines. IJCV, 97(3):339–368, 2012.

[27] H. Strasdat, J.M.M. Montiel, and A. Davison. Visual SLAM: Why
Filter? IMAVIS, 30(2):65–77, 2012.

[28] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
benchmark for the evaluation of RGB-D SLAM systems. In IROS,
Oct. 2012.

[29] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao. Robust monocular
SLAM in dynamic environments. In ISMAR, pages 209–218. IEEE,
2013.

[30] A. Vakhitov, J. Funke, and F. Moreno-Noguer. Accurate and linear
time pose estimation from points and lines. In ECCV, 2016.

[31] R. G. von Gioi, J. Jakubowicz, J. M. Morel, and G. Randall. LSD: a
line segment detector. IPOL, 2:35–55, 2012.

[32] A. Wendel, M. Maurer, G. Graber, T. Pock, and H. Bischof. Dense
reconstruction on-the-fly. In CVPR, pages 1450–1457, 2012.

[33] L. Zhang and R. Koch. An efficient and robust line segment
matching approach based on LBD descriptor and pairwise geometric
consistency. JVCIR, 24(7):794–805, 2013.

	INTRODUCTION
	RELATED WORK
	SYSTEM OVERVIEW
	LINE-BASED SLAM
	Line-based Reprojection Error
	Bundle Adjustment with Points and Lines
	Global Relocalization

	MAP INITIALIZATION WITH LINES
	EXPERIMENTAL RESULTS
	Localization Accuracy in the TUM RGB-D Benchmark
	Map Initialization - Synthetic Experiments
	Map Initialization - Real Experiments
	Computation Time

	CONCLUSIONS
	References

